Lecture 13
Problems in VLSI design

• wire and transistor sizing
 – signal delay in RC circuits
 – transistor and wire sizing
 – Elmore delay minimization via GP
 – dominant time constant minimization via SDP

• placement problems
 – quadratic and \(l^1 \)-placement
 – placement with timing constraints
Signal delay in RC circuit

\[C \frac{dv}{dt} = -G(v(t) - 1), \quad v(0) = 0 \]

- capacitance matrix \(C = C^T > 0 \)
- conductance matrix \(G = G^T > 0 \)
- \(v \): node voltages
- as \(t \to \infty \), \(v(t) \to 1 \)
- delay at node \(k \):
 \[D_k = \inf \{ T \mid v_k(t) \geq 0.5 \text{ for } t \geq T \} \]
- critical delay: \(D = \max_k D_k \)
Transistor sizing

RC model of transistor

nMOS transistor (width w)

$C_g \propto w \quad C_s \propto w \quad C_d \propto w$

$R_{sd} \propto 1/w$

example

v_{out}

C_L
• to first approximation: linear RC circuit

• design variable: transistor width w

• drain, source, gate capacitance affine in width

• ‘on’ resistance inversely proportional to width
Wire sizing

interconnect wires in IC: distributed RC line

lumped RC model:

\[R_i \propto \frac{l_i}{w_i} \]
\[C_i \propto w_i l_i \]

- replace each segment with \(\pi \) model
- segment capacitance proportional to width
- segment resistance inversely proportional to width
- design variables: wire segment widths \(w_i \)
Optimization problems involving delay

\[C(x) \frac{dv}{dt} = -G(x)(v(t) - 1), \quad v(0) = 0 \]

- design parameters \(x \): transistor & wire segment widths
- capacitances, conductances are affine in \(x \):
 \[C(x) = C_0 + x_1 C_1 + \cdots + x_m C_m \]
 \[G(x) = G_0 + x_1 G_1 + \cdots + x_m G_m \]
tradeoff between

- delay, complicated function of \(x \)
- area, affine in \(x \)
- dissipated power in transition \(v(t) = 0 \rightarrow 1 \)

\[
\frac{1^T C(x) 1}{2}
\]

affine in \(x \)
Elmore delay

• area above step response

\[T_{k}^{\text{elm}} = \int_{0}^{\infty} (1 - v_{k}(t)) \, dt \]

• first moment of impulse response

\[T_{k}^{\text{elm}} = \int_{0}^{\infty} t v_{k}(t)' \, dt \]

• \(T_{k}^{\text{elm}} \geq 0.5 D_{k} \)

• good approximation of \(D_{k} \) only when \(v_{k} \) is monotonically increasing

• interpret \(v_{k}' \) as probability density:
 \(T_{k} \) is mean, \(D_{k} \) is median
Elmore delay for RC tree

RC tree

- one input voltage source
- resistors form a tree with root at voltage source
- all capacitors are grounded
Elmore delay to node k:

\[\sum_i C_i \left(\sum R's \text{ upstream from node } k \text{ and node } i \right) \]

Example:

\[T_{3}^{\text{elm}} = C_3(R_1 + R_2 + R_3) + C_2(R_1 + R_2) + C_1R_1 \]
\[+ C_4R_1 + C_5R_1 + C_6R_1 \]
Elmore delay optimization via GP

in transistor & wire sizing, \(R_i = \alpha_i/x_i, \ C_j = a_j^T x + b_j \)
\((\alpha_i \geq 0, \ a_j, b_j \geq 0)\)

Elmore delay:

\[
T_{k}^{elm} = \sum_{ij} \gamma_{ij} R_j C_i = \sum_{k=1}^{m} \beta_k \prod_{i=1} \alpha_{ik} x_i
\]

\((\gamma_{ij} = +1 \text{ or } 0, \ \beta_k \geq 0, \ \alpha_{ij} = +1, 0, -1)\)

\ldots a posynomial function of \(x > 0 \)

hence can minimize area or power, subject to bound on Elmore delay using geometric programming

commercial software (1980s): \(e.g., \) TILOS
Limitations of Elmore delay optimization

- not a good approximation of 50% delay when step response is not monotonic (capacitive coupling between nodes, or non-diagonal C')

- no useful convexity properties when
 - there are loops of resistors
 - circuit has multiple sources
 - resistances depend on more than one variable
Dominant time constant

\[C(x) \frac{dv}{dt} = -G(x)(v(t) - 1), \quad v(0) = 0 \]

- eigenvalues \(0 > \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \) given by

\[\det(\lambda_i C(x) + G(x)) = 0 \]

- solutions have form

\[v_k(t) = 1 - \sum_i \alpha_{ik} e^{\lambda_i t} \]

- slowest ("dominant") time constant given by \(T_{\text{dom}} = -1/\lambda_1 \) (related to delay)
• can bound D, T_{elm} in terms of T_{dom}

• in practice, T_{dom} is good approximation of D
Dominant time constant constraint as linear matrix inequality

upper bound $T^\text{dom} \leq T_{\text{max}}$

$$T^\text{dom} \leq T_{\text{max}} \iff T_{\text{max}}G(x) - C(x) \geq 0$$

- convex constraint in x (linear matrix inequality)
- no restrictions on G, C
- T^dom is quasiconvex function of x, i.e., sublevel sets
 $$\{ x \mid T^\text{dom}(x) \leq T_{\text{max}} \}$$
 are convex
Sizing via semidefinite programming

minimize area, power s.t. bound on T^{dom}, upper and lower bounds on sizes

minimize $f^T x$

subject to $T_{\max} G(x) - C(x) \geq 0$

$x_i^{\min} \leq x_i \leq x_i^{\max}$

- a convex optimization problem (SDP)

- no restrictions on topology
 (loops of resistors, non-grounded capacitors)
Wire sizing

minimize wire area subject to

- bound on delay (dominant time constant)
- bounds on segments widths

RC-model:

as SDP:

minimize \(\sum_i \ell_i x_i \)
subject to \(\max G(x) - C(x) \geq 0 \)
\(0 \leq x_i \leq 1 \)
area-delay tradeoff

• globally optimal tradeoff curve

• optimal wire profile tapers off

step responses \text{(solution (a))}
Wire sizing and topology

not solvable via Elmore delay minimization

min area s.t. max dominant time constant (via SDP):

minimize \(\sum x_i \)
subject to \(T_{\text{max}} G(x) - C(x) \geq 0 \)
• usually have more wires than are needed

• solutions usually have some \(x_i = 0 \)

• different points on tradeoff curve have different topologies
solution (a)

\[x_4 = 0.15x_6 = 0.11 \]

solution (b)

\[x_3 = 0.02 \]
\[x_4 = 0.03x_6 = 0.03 \]

solution (c)

\[x_3 = 0.014 \]
Placement

- list of cells: cells $i = 1, \ldots, N$ are placeable, cells $i = N + 1, \ldots, N + M$ are fixed (e.g., I/O)

- input and output terminals on boundary of cells

- group of terminals connected together is called a net
• placement of cells determines length of interconnect wires, hence signal delay

• problem: determine positions \((x_k, y_k)\) for the placeable cells to satisfy delay constraints

• practical problem sizes can involve 100,000s of cells

• exact solution (including delay, area, overlap constraints) is very hard to compute

• heuristics (often based on convex optimization) are widely used in practice
Quadratic placement

assume for simplicity:

- cells are points (i.e., have zero area)
- nets connect two terminals (i.e., are simple wires)

quadratic placement:

\[
\minimize \sum_{\text{nets } (i,j)} w_{ij} \left((x_i - x_j)^2 + (y_i - y_j)^2 \right)
\]

weights \(w_{ij} \geq 0 \)

unconstrained convex quadratic minimization (called ‘quadratic programming’ in VLSI)
• solved using CG (and related methods) exploiting problem structure (e.g., sparsity)

• physical interpretation: wires are linear elastic springs

• widely used in industry

• constraints handled using heuristics (e.g., adjusting weights)
\(\ell^1 \)-placement

\[
\text{minimize } \sum_{\text{nets } (i,j)} w_{i,j} (|x_i - x_j| + |y_i - y_j|)
\]

- measures wire length using Manhattan distance (wire routing is horizontal/vertical)

- motivation: delay of wire \((i, j)\) is \(RC\) with

\[
R = R_{\text{driver}} + R_{\text{wire}}, \quad C = C_{\text{wire}} + C_{\text{load}}
\]

\(R_{\text{driver}}, C_{\text{load}}\) are given, \(R_{\text{wire}} \ll R_{\text{driver}},\)

\(C_{\text{wire}} \propto \text{wire length (Manhattan)}\)

- called ‘linear objective’ in VLSI
Nonlinear spring models

\[
\text{minimize } \sum_{\text{nets } (i,j)} h(|x_i - x_j| + |y_i - y_j|)
\]

\(h\) convex, increasing on \(\mathbb{R}_+\)

example

- flat part avoids ‘clustering’ of cells
- quadratic part: for long wires \(R_{\text{wire}} \propto \text{length}\)
- solved via convex programming
Timing constraints

- cell i has a processing delay D_{i}^{proc}

- propagation delay through wire (i, j) is $\alpha \ell_{ij}$, where ℓ_{ij} is the length of the wire

- minimize max delay from any input to any output
The problem is:

\[
\text{minimize } T \\
\text{subject to } \sum_{\text{cells in path}} D_{i}^{\text{proc}} + \sum_{\text{wires in path}} \alpha l_{ij} \leq T
\]

- one constraint for each path
- variables: \(T \), positions of placeable cells (which determine \(l_{ij} \))
- a very large number of inequalities
A more compact representation

- introduce new variable T_i^{out} for each cell

- for all cells j, add one inequality for each cell i in the fan-in of j

$$T_i^{\text{out}} + \alpha \ell_{ij} + D_j^{\text{proc}} \leq T_j^{\text{out}}$$ \hspace{1cm} (1)

- for all output cells

$$T_i^{\text{out}} \leq T$$ \hspace{1cm} (2)

- minimize T subject to (1) and (2)

convex optimization problem:

- with l^1-norm, get LP

- with l^2-norm, get SOCP
extensions (still convex optimization):

- delay is convex, increasing fct of wire length
- max delay constraints on intermediate cells
- different delay constraints on cells
Non-convex constraints and generalizations

non-convex constraints

- cells are placed on grid of legal positions
- cells are rectangles that cannot overlap
- reserved regions on chip

generalizations

- multi-pin nets: share interconnect wires
- combine placement with wire and gate sizing