
29. A Coherence Protocol for the Elimination of Passive Sharing in
Single and Multiple Threaded Shared-Bus

Shared-Memory Multiprocessors

Roberto Giorgi,
University of Alabama at Huntsville

and Cosimo Antonio Prete,
University of Pisa

Single-chip multiprocessors and multiple-thread architectures are becoming an affordable solution for
high-performance general-purpose workstations and servers.

On these machines, the workload is typically constituted of both sequential and parallel applications.
Shared-bus shared-memory multithreaded multiprocessor can be used to speed-up the execution of such
workload. In this environment, the scheduler takes care of the load balancing by allocating a ready
process on the first available processor, thus producing process migration.

Process migration and the persistence of private data into different caches produce an undesired shar-
ing, named passive sharing. The copies due to passive sharing produce useless coherence traffic on the
bus and coping with such a problem may represent a challenging design problem for these machines.

Many protocols use smart solutions to limit the overhead to maintain coherence among shared copies.
None of these studies treats passive-sharing directly, although some indirect effect is present while deal-
ing with the other kinds of sharing. Affinity scheduling can alleviate this problem, but this technique
does not adapt to all load conditions, especially when the effects of migration are massive.

A simple coherence protocol is presented. This protocol eliminates passive sharing using information
from the compiler that is normally available in operating system kernels. The performance of this pro-
tocol has been evaluated and compared against other solutions proposed in the literature by means of
enhanced trace-driven simulation.

The performance of the proposed dolution outperforms the other protocols, especially in the case of a
multithreaded processor, thus demonstrating its effectiveness in this kind of hardware platform.

The complexity of the proposed approach has been evaluated in terms of the number of protocol states,
additional bus lines and required software support.

The protocol further limits the coherence-maintaining overhead by using information about access
patterns to shared data exhibited in parallel applications.

Roberto Giorgi and Cosimo Antonio PreteRoberto Giorgi and Cosimo Antonio Prete

contact address: giorgi@acm.orgcontact address: giorgi@acm.org

A Coherence Protocol
For the Elimination of Passive Sharing

In Single and Multiple Threaded
Shared-Bus Shared-Memory Multiprocessors

University of Pisa, ITALY

University of Alabama in Huntsville, USA

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 1

Outline

• What is Passive Sharing?

• Techniques that reduce Passive Sharing

• Our solution at Protocol Level

• Performance Evaluation against other Protocols

• Effectiveness in Single-Context Multiprocessors
and in Multiple-Context Multiprocessors

• Conclusions and References

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 2

Introduction
• Basic Multiprocessor Architecture:

N processors connected by a simple bus

• Our goal:
to evaluate the problems that limit the scalability of this machine
while it runs commercial applications

• One source of problems is:
the presence of private-data copies in processor caches

• Why these copies are present:
the operating system allows process migration
in order to achieve load balancing

• In current architectures those data appear as shared,
generating unnecessary occupation of critical resources (the bus)

• We named this phenomenon “Passive Sharing”
and we studied solutions to limit and reduce its effects

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 3

Our Reference Papers

• Methodology:
R. Giorgi, C.A. Prete, G. Prina, L. Ricciardi, "Trace Factory:
Generating Workloads for Trace-Driven Simulation of Shared-
Bus Multiprocessors", IEEE Concurrency, Vol. 5, No. 4, Oct.
1997.

• Performance Evaluation:
R. Giorgi, C.A. Prete, “PSCR: A Coherence Protocol for
Eliminating Passive Sharing in Shared-Bus Shared-Memory
Multiprocessors”, to appear on
IEEE Transactions on Parallel and Distributed Systems

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 4

What is Passive Sharing?

TYPES OF SHARING
in multiprocessor systems

FALSE

ACTIVE

PASSIVE

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 5

Active (or True) Sharing

– The processes P1 e P2
really share the
information m

– A bus action
IS NECESSARY
in order to keep coherent
those copies

[Gupta92] [Adve91]

shared Copy of mshared Copy of m

P1 P2CPU1 CPU2

write transaction
or invalidation

shared Copy of mshared Copy of m

P1 P2CPU1 CPU2

write transaction
or invalidation

write

write

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 6

P1 P2

cache
block

shared

CPU1

shared

CPU2P1 P2

shared

CPU2

shared

CPU1P1 P2
write

False Sharing

write

– The data block
contains several variables
always accessed separately

– The processes P1 and P2
DO NOT really share
information

– Is it necessary a bus action
in order to keep coherent
those copies?

[Torrellas90] [Eggers91]

coherence action

coherence action

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 7

Passive Sharing

– Process P1 access
the private data mm

P1

private Copy of m

CPU1

P1

shared Copy of m

CPU2

shared Copy of m

CPU1

– When P1 access again
its private data mm
both copies become
passively shared

– Is it necessary a bus action
in order to keep coherent
those copies?

coherence action
[Prete90] [Prete97]

– Process P1 is preempted …
and re-activated lately
on a different processor

write

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 8

Techniques that Reduce Passive Sharing

CPU?

CPU1 CPU3CPU2

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 9

Cache Flushing
• Cache flushing:

the cache is flushed at each context-switch

• Advantages
– supported by almost all cache-controllers

• Disadvantages
– loss of potentially usuful information

– bus-traffic peak due to dirty-copy updating

– bus-traffic peak due to reload of working-set on new processor

– this happens even if we selectively flush private data and private copies

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 10

Cache Affinity Scheduling
• Cache-Affinity Scheduling:

the process scheduler tries to resume a process
on the processor where it last executed

• Advantages
– the process can re-use part of its working-set

eventually still present in that processor’s cache

– well-known technique
currently implemented in many operating systems

• Disadvantages
– cache-affinity is not always applicable!

The scheduler can be forced to schedule a certain process on another
processor, expecially when the number of “ready” proccesses is low

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 11

Write-Invalidate Protocols
• Write-Invalidate Protocols:

the remote data is invalidated at the first write access

• Advantages
– passive copies are slowly and “spontaneously” eliminated

without generating bus-traffic peaks

– this kind of protocol is available in almost all high-performance CPUs
(like Intel Pentium II and III, AMD K6, PowerPC, UltraSPARCII)

• Disadvantages
– passive copies still persit and generate unnecessary bus-traffic

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 12

Our Solution to Eliminate Passive Sharing
• A Coherence Protocol for Eliminating Passive Sharing

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 13

Our Proposed Solution
• By intervening at protocol level,

it is possible to eliminate Passive Sharing
(PSCR, Passive-Shared Copy Removal [Prete97])

• Idea: a private block is locally invalidated as soon as
a different processor tries to fetch it

• Advantages
– adaptivity to any situation imposed by

the workload or operating system

– compared to other protocols
there’s no additional cost in terms of bus transactions

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 14

Performance Evaluation

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 15

Workloads and Protocols
• The simulation are carried out by means of

Trace Factory environment [Giorgi97e]
– simulation is “kind of” trace-driven, which also include the modelling of

most influencing operating system activities
(kernel references, process scheduling, virtual memory)

• Trace Factory produced the traces of real programs in a scenario of
real multitasking. The generated workloads are:

UniP: 30 different sequential programs

Mix1/Mix2: like UniP plus a multithreaded application

OLTP, DSS (Database, benchmarck TPC-B, TPC-D), WEB Server

• Coherence protocols considered:
Write-Update class: Dragon [McCreight84]

Write-Invalidate class: Berkeley, MESI

Hybrid class: Competitive [Karlin86], Update-Once [Gee93] (Smith’s protocol)

Selective class: PSCR, AMSD (protocol for migratory sh.[Stenstrom93][Cox93])

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 16

Performance Evaluation
• Reference Machine

– Cache
cache size = 256 KBytes
block size = 64 Bytes
number of ways = 1 (direct access)

– Bus
width = 64 bit
read-block transaction cost = 32 cycles
cache-to-cache transaction cost = 24 cycles
write transaction cost = 5 cycles
update transaction cost = 18 cycles
invalidate transaction cost = 5 cycles

• Metric used in our comparisons
– GSP Global System Power [Archibald86]:

GSP = 100 x ΣUcpu,

Ucpu = (Tcpu-Tdelay)/Tcpu

Tcpu time to execute the whole workload

Tdelay time that the CPU has to wait for memory access completation

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 17

Comparison against other Protocols (1)

Unip

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 18

Comparison against other Protocols (2)

Unip

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 19

Unip

Without Cache-Flushing

Effect of Cache-Flushing

WITH Cache-Flushing

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 20

Effect of Affinity Scheduling

Unip

Generic Scheduling Cache-Affinity Scheduling

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 21

Multi-Context Multiprocessor Model

CPU0

CTX 0 CTX 1 CTXC

CPU1 CPUP

Multithreaded program Sequential programs

High level sched.

Low level sched.
...

CTX 0 CTX 1 CTXC

...

CTX 0 CTX 1 CTXC

...

Low level sched.Low level sched.

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 22

Multi-Context Case

1 context

2 contexts

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 23

Conclusions
• A solution to eliminate Passive Sharing has been evaluate against:

– other techniques that may reduce this phenomenon

– other coherence protocols that are currently know and implemented

– in the case of single and multiple-context multiprocessors

• In our experiments on a shared-bus shared-memory
multiprocessor, running a composite workload, PSCR protocol:
– outperform the other coherence protocols

– enhance the scalability of the machine

WSSMM - May 1999 Roberto Giorgi - giorgi@acm.org 24

References
– [Adve91] S. V. Adve, M. D. Hill, and M. Vernon, "Comparison of Hardware and Software Cache Coherence Schemes,''

Proc. of the 18th Int'l Symp. on Computer Architecture, pp. 298-308, May 1991.
– [Archibald86] J. K. Archibald and J. L. Baer, "Cache Coherence Protocols: Evaluation Using a Multiprocessor Simulation

Model,'' ACM Trans. on Comp. Systems, vol. 4, pp. 273-298, Apr. 1986.
– [Cox93] A. L. Cox and R. J. Fowler, "Adaptive Cache Coherency for Detecting Migratory Shared Data,'' Proc. 20th Int'l

Symp. on Computer Architecture, San Diego, California, pp. 98-108, May 1993.
– [Eggers91] S. J. Eggers, "Simplicity versus Accuracy in a Model of Cache Coherency Overhead,'' IEEE Trans. Computers,

vol. 40, no. 8, pp. 893-906, Aug. 1991.
– [Gee93] J. G. Gee and A. J. Smith, "Absolute and Comparative Performance of Cache Consistency Algorithms,'' Tech.

Rep. UCB//CSD-93-753, EECS Computer Science Division, University of California, Berkeley, 1993.
– [Giorgi97e] R. Giorgi, C. Prete, G. Prina, and L. Ricciardi, "Trace Factory: Generating Workloads for Trace-Driven

Simulation of Shared-Bus Multiprocessors,'' IEEE Concurrency, vol. 5, no. 4, pp. 54-68, Oct. 1997.
– [Gupta92] A. Gupta and W.-D. Weber, "Cache Invalidation Patterns in Shared-Memory Multiprocessors,'' IEEE Trans.

Computers, vol. 41, no. 7, pp. 794-810, July 1992.
– [Karlin86] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator, "Competitive Snoopy Caching,'' Proc. 27th Symp. on

Foundations of Computer Science, pp. 244-254, Oct. 1986.
– [McCreight84] E. M. McCreight, "The Dragon computer system: an early overview,'' NATO Advanced Study Institute on

Microarchitecture of VLSI Computer, Urbino, Italy, July 1984.
– [Prete90] C. A. Prete, "A new solution of coherence protocol for tightly coupled multiprocessor systems,'' Microprocessing

and Microprogramming, vol. 30, no. 1-5, pp. 207-214, 1990.

– [Prete97] C. A. Prete, G. Prina, R. Giorgi, and L. Ricciardi, "Some Considerations About Passive Sharing in Shared-
Memory Multiprocessors,'' IEEE TCCA Newsletter, pp. 34-40, Mar. 1997.

– [Squillante93] M. S. Squillante and D. E. Lazowska, "Using processor-cache affinity information in shared-memory
multiprocessor scheduling,'' IEEE Trans. Parallel Distributed Systems, vol. 4, no. 2, pp. 131-143, Feb. 1993.

– [Stenström93] P. Stenström, M. Brorsson, and L. Sandberg, "An Adaptive Cache Coherence Protocol Optimized for
Migratory Sharing,'' 20th Int'l Symp. on Computer Architecture, pp. 109-118, May 1993.

– [Torrellas90] J. Torrellas, M. S. Lam, and J. L. Hennessy, "Share Data Placement Optimizations to Reduce Multiprocessor
Cache Miss Rates,'' Proc. 1990 Int'l Conf. on Parallel Processing. Vol. 2: Software, Urbana-Champaign, IL, pp. 266-270,

Aug. 1990.

