
A Clockless Computing System based on the Static
Dataflow Paradigm

Lorenzo Verdoscia and Roberto Vaccaro
Institute for High Performance Computing and Networking

CNR - Napoli, Italy
Email: lorenzo.verdoscia@na.icar.cnr.it

Roberto Giorgi
Dept. Ingegneria dell’Informazione
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Abstract—The ambitious challenges posed by next exascale
computing systems may require a critical re-examination of
both architecture design and consolidated wisdom in terms of
programming style and execution model, because such systems
are expected to be constituted by thousands of processors with
thousands of cores per chip. But how to build exascale archi-
tectures remains an open question. This paper presents a novel
computing system based on a configurable architecture and a static
dataflow execution model. We assume that the basic computational
unit is constituted by a dataflow graph. Each processing node is
constituted by an ad hoc kernel processor – designed to manage
and schedule dataflow graphs, and a manycore dataflow execution
engine – designed to execute such dataflow graphs. The main
components of the dataflow execution engine are the Dataflow
Actor Cores (DACs), which are small, identical and configurable.

The major contributions of this paper are: i) the introduction
of a machine language (named D#) which represents the low-level
static configuration information of the system; ii) the introduction
of a self-scheduled clockless mechanism to start operations on the
presence of validity tokens only; iii) a design that avoids the need
of temporary storage for tokens on the links of the DACs. Our
preliminary tests on FPGA-based hardware show the feasibility
of this approach.

I. INTRODUCTION

The next big HPC supercomputing challenge is to break the
exascale barrier with processor chips expected to be constituted
by thousands of cores [1] at 14-nm technology or less. New
architectures may not be easily programmed. Our proposal is
to organize the computational units so that in the same chip
we have both standard cores and dataflow execution cores. If
many-core is destined to be the way forward, a profoundly
new architectural model must be developed. But their effective
organization into a programmable architecture constitutes a
list of challenging points such as the rethink of programming
models so that programmers can express application paral-
lelism. To successfully meet this impressive set of challenges,
it is required a critical re-examination of conventional wisdom,
in terms of programming style and execution model, and
more bravery, to search for different solutions still unexplored.
Moreover, there is growing agreement that reaching this goal
will require a substantial shift toward hardware/software co-
design [2][3]. From a programming and architectural point of
view, such an approach, combining the functional programming
style and the static dataflow paradigm, would give a significant
contribution to the design of new and unconventional exascale
computing systems, given their close relationship and natural
ability to explore and deal with parallelism: the first can create
dataflow program graphs in demand mode, the second can
execute them in dataflow mode [4][5].

Even though dataflow paradigm is not new, recently it
has received a renewed interest in Industries and research
[6][7][8][9][10][11][12]. We show in this work that with our
configurable1 computing system it is possible to realize an asyn-
chronous and configurable dataflow execution engine where
the execution of a Dataflow Program Graph (hereafter DPG)
happens directly in hardware exactly like a dataflow graph com-
putation takes place in the homogeneous High Level Dataflow
model [14]. We create the one-to-one correspondence between
actors of the model and Dataflow Actor Cores (hereafter DACs)
of the Dataflow Execution Engine using the demand-data driven
approach as co-design methodology [15].

We point out that our configurable dataflow execution engine
is different from existing FPGA-based dataflow graph proces-
sors because we do not need any kind of control flow graph
mechanisms during the execution of a dataflow graph except
the natural flow of data even if the graph includes cycles.

This paper makes three main contributions:
(1) we introduce a machine language (named D#) which rep-

resents the low-level static configuration information of the
system or in other terms the Dataflow Program Graph; such
language also represent a complete set of the elemental
operator to support the Chiara functional language [16] and
in accordance with the previously introduced model for the
behavior of dataflow graph called hHDLS [14];

(2) the introduction of a self-scheduled clockless mechanism
to start DAC operations on the presence of validity tokens
only; differently from Dennis’ Dataflow Schemas [17],
where operations are triggered by the token presence, in our
case we start operations on a /em token validity information;
in such case Dennis’ Instruction Scheduler and the check
of token absence on any output arc of a DAC is eliminated
- so, a DAC firing is self-scheduled;

(3) a design that avoids the need of temporary storage for
tokens on the links of DACs: in our machine the DPG arcs
are mapped to simple wires since they represent simple
transmission of tokens rather than dependencies among
operations; links are mapped to junction points rather than
places to hold tokens. Therefore, in our case, tokens can
flow asynchronously from a DAC to another, eliminating
the need of any temporary storage to execute a DPG.

1As terms like configurable or reconfigurable computing [13] in the past had
a more general meaning than nowadays it has, e.g. FPGA-based reconfigurable
computing, to avoid confusion, from here on the newest meaning will be
explicitly expressed by using the term FPGA-based.



The remainder of this paper is organized as follows. Sec-
tion II briefly prefaces the link between configurable and
dataflow architectures; Section III introduces D# language and
shows as it is linked to the homogeneous High Level Dataflow
System, the functional language Chiara, and the compiling
tools; Section IV presents the configurable dataflow machine
and its program execution model; Section V presents some use-
ful parameters to compare a many-core dataflow architecture to
others; Section VI discuss related work in this area; Section VII
for our conclusions.

II. CONFIGURABLE AND DATAFLOW ARCHITECTURES

Data-flow languages and architectures derive from a base
paradigm of the data-flow graph – that is, the modeling of a
program as a set of operator and link nodes [17] interconnected
by a set of data- and control-carrying arcs. Under this paradigm
there is no current operation, and each operator is free to
execute when its data arrives making explode, thus, parallelism
at an inherently fine-grain level. But due to technological limits
and the unsuitability of the DPG representation model for
for their direct execution onto a realistic hardware dataflow
execution engine [15], dataflow has received a harsh criticism.
As nowadays most of the obstacles have been overcome, a
new scenario opens up for dataflow. To better comprehend the
reason why our architecture is configurable and our dataflow
paradigm is the homogeneous High Level Dataflow System
model, we report a brief retrospect of some pioneering works
that originated the configurable computing.
In the 1966 Miller and Rutledge [18] presented an approach
to automatically convert a sequential program into a parallel
program whose technique produced a block diagram for parallel
operations that depended on the data flow rather than instruction
sequences. In contrast to a von Neumann-based machine, a
few years later, Miller and Cocke [19] proposed a new class
of configurable and general purpose computers that used this
data-flow as a method for configuring such a computer to
directly execute it – the Interconnection Mode Configurables
and Search Mode Configurables, where the natural and inherent
parallelism of a program was exploited during its execution.
As no additional sequencing limitations due to the program
instructions or to the machine control were imposed, this made
the main difference in respect to the conventional way to
sequence the computer operations. Their peculiarity was the
possibility of dynamically interconnecting the processors that
correspond the the actors in the dataflow program according to
the graph.
The interconnection and search mode configurables can be
considered as basic models of dataflow machines [20]. While
in the former the interconnection of operational units is actually
implemented through a configurable switching, in the latter
the interconnection of operational units is simulated. However,
even though a search mode architecture eliminated the program
counter and the global updateable storage, it preserved the
concept of enabled/executable instruction – on the other hand
the instruction cycle inefficiency has been identified as one
of the main shortcomings of earlier experience in dataflow
computing. Whereas the interconnection mode architecture
allowed the elimination of the enabled instruction concept
also. In fact, an interconnection network is used to create

direct interconnections between outputs of operational units
and inputs to other operational units in a manner consistent
with the data flow model structure. No instruction needed to
be fetched from memory during the execution of an algorithm,
and temporary data and instruction were eliminated as well
as traffic over the memory access ports. In contrast to how
the execution of DPGs should happen on an interconnection
mode architecture, the actors and links as well as defined
with the classical dataflow model [17] practically constitute
an insuperable obstacle because (1) actors have heterogeneous
number of I/O link and consume and produce heterogeneous
tokens, data and control; (2) links are heterogeneous to hold
tokens, data and control. So, all realized dataflow machines
have fallen within the type search mode. Only the Arvind
and Gostelow computer [21] is partially of interconnection
mode type and partially of search mode type. In contrast,
our configurable dataflow machine (sec. IV) falls into the
interconnection mode architectures.

III. hHLDS, D# MACHINE LANGUAGE, AND COMPILING
TOOLS

A. The hHLDS model

High-Level Dataflow System (HLDS) [14] is a formal model
to describe the behavior of a directed dataflow graph where
nodes are operators (actors) or links (places to hold tokens) that
can have heterogeneous I/O conditions. Nodes are connected
by arcs along which tokens (data and control) may travel.
In that paper, also the homogeneous HLDS (hHLDS) was
presented. hHLDS describes the behavior of a static dataflow
graph imposing homogeneous I/O conditions on actors but not
on links. Actors can only have exactly one output and two
input arcs and consume and produce only data tokens, links
represent only connections between arcs. Since hHLDS’ actors
cannot produce control tokens, merge, switch, and logic-gate
actors [17] are not present. While actors are determinate, links2

may be not determinate. In contrast, these features simplify the
design of a dataflow execution engine chip using only identical
DACs and one type of connection among them. In addition,
despite the model simplicity, in hHLDS it has been proved that
it is always possible to obtain DPGs which are determinate and
where:
• actors fire when their two input tokens are valid, i.e. able

to fire an actor, and no matter if their previous output token
has not been consumed. In this case, the new token shall
replace the previous one. In a system that allows the flow
of only data tokens, this property is essential to construct
determinate cycles (loops);

• to execute a program correctly, only one way token flow is
present as no feedback interpretation is needed;

• no synchronization mechanism needs to control the token
flow, thus the model is completely asynchronous.

In hHLDS actors and links are connected to form a more com-
plex DFG. However, the resulting DFG may be not determinate

2In hHDLS there exist two types of links: i) Joint links, which represent a
place where two or more output arcs can coexist and ii) Replica links, which
are similar to joint links but have only one output arcs. In the case of Joint
links the output arc (among the several available) where the token will travel
is unpredictable.
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Fig. 1: The basic macro-Actors (mAs) in D#: (a) TEST, (b)
COND, (c) IT R

if cycles occur because no closure property can be guaranteed
[22]. This happens for sure when the graph includes joint links,
which are not-determinate. In the case when the DPG results
to be determinate, we name it macro-Actor (mA). Obviously,
an mA is characterized by having I(mA)> 2 and O(mA)≥ 1
where I(mA) is the number of input arcs (in-set) of mA and
O(mA) is the number of output arcs (out-set).

B. The D# machine language

Our machine offers programming in a machine language that
we call D#. D# is both the machine language and the graphical
representation language that describes the dataflow graph of a
program. It has been defined applying the demand-data-driven
approach to co-design methodology [15] between the functional
paradigm and the hHLDS paradigm.
When a DPG, i.e. the abstract entity in hHLDS, is embodied
in the machine hardware, it happens that: (1) each DPG actor
(abstract entity) is turned into one DAC, i.e. the physical entity,
the actor firing rules become the DAC activation rules; (2)
each arc/link (abstract entities) that connects two/more-than-
two DPG actors is turned into a wire/wire-junction inside the in-
terconnection network (physical entity) that connects two/more-
than-two DACs; (3) each token and its validity (abstract entity)
are turned into a data value and its validity signal (physical
entity) so that the self-scheduling of a DACs can happen.
As macro-actors structures in D# are formed like in hHLDS,

here we only report the fundamental ones that allow the creation
of more complex structures (i.e., TEST, COND, IT R macro-
Actors).

The macro-Actor TEST. The simplest conditional structure
is the mA TEST. It is an example of data-dependent DPG.
When coupled to its complement TEST, it forms a fundamental
building-block to create conditional and iterative mAs. TEST is
represented by a determinate and well-behaved mA with in-set
= 3 and out-set =1 and formed connecting the relational actor
R to the actor that performs the arithmetic operator + as shown
in Fig 1(a). If a, b, c ∈ R, its semantics is:

TEST(a, b, c) =
{

c if a R b is satisfied
⊥ otherwise

⊥ stays for not valid value. When the actor R satisfies its
relation on the tokens a and b, it produces a token that has the
data-value 0 (zero) and the validity ”valid”, thus the operation
produces the token c. When the relational actor R does not
satisfy its relation, it produces a token that has the data-value
don’t-care and the validity ”not valid”.

The macro-Actor COND. The simplest relational structure
is the mA COND, shown in Fig. 1(b). It forms the building-
block to create more complex conditional structures. COND is
represented by a determinate and well-behaved mA with in-set
= 4 and out-set =1. It is formed connecting the two mAs TEST
and TEST with a link Joint. If a, b, c, d ∈ R and p = aR b. Its
semantics is:
COND(a, b, c, d) =

{
c if aR b is satisfied
d otherwise

The macro-Actor IT R. The iterative data-depend structure is
the mA IT R. It constitutes the building- block to create more
complex data-dependent iterative structures. It is represented by
a determinate and well-behaved macronode with in-set = 2 and
out-set =1. IT R is formed connecting the two mAs TEST and
TEST, an arithmetic actor or a macro-Actor mA1, and the actor
LST as shown in Fig. 1(c). The LST semantics is: it selects the
right token the first time which is fired, the left token otherwise.
If a, b, c, d, e, f ∈ R, its semantics is:

IT R(a, b,mA) =
{

IT R if c R d is satisfied
f otherwise

Observing Fig. 1(c), we point out that, if mA1 (at the center of
Fig. 1(c)) is itself an IT R, the figure represents a determinate
and well-behaved nested-data-dependent iterative structure.

D# definition. D# programming system is a tuple (A, T, F)
where: A is the set of actor-number identifiers, T is a set
of tokens and the undefined special one⊥ (called bottom) –
generally used to denote errors; and F is a set of operators
from tokens to tokens.
In the D# language a program is a collection of standard
expressions that form a DPG. Each expression refers an actor
and specifies its functionality. It is so organized:

< a >, < f >, < tL >, < tR >, < dO >
where a is the identifier number of the actor, f is its operation
to perform, tL and tR are its left and right input tokens, dO

is the identifier actor number/numbers that has/have to receive
its operation result. If the result is a final one dO is tagged
out. Regarding to tL and tR, in the language we distinguish
external and internal data values. The former are values starting
with the % character when they are the initial values – they
become not valid once consumed, and values terminating with
the % when they are the constant values – they continue to be
valid. The latter are integers that represent the identifier number
of the actor which will produce that value. As an example,
let us consider the first expression of the D# code shown in
Fig. 2(b). The actor LST will receive its left input value from
the actor numbered 26 while its right input value is an initial
one. Regarding to dO, if it is a list of integers separated by
- (dash) characters, this means that each actor in the list will
receive the value produced. All the identifier actor numbers
present in D# notation play the basic role both to correctly and
simply generate the code for the configurable network inside the
dataflow execution engine and to allow using available software
tools that can efficiently carry out the mapping phase.

C. CHIARA language and the compiling tools

The CHIARA language has been already defined in [16],
here is briefly recalled: a CHIARA program is nothing but a
set of function definitions plus an expression (i.e. a function



# Fxlxm evaluates the Fx sign in the interval xl and xm

# After Fxlxm application, the new convergence

# xlxm = [xl, xm] or xmxr = [xm, xr]

# if xm is the solution

# Pnt creates the sequence <xl, xm, xr> with xl,

# the left, average, and right interval values

# FxTest checks the convergence loop

#main program

interval can be

or xmxm = [xm, xm]

xm, and xr

def eps = 0.01

def Fx = - o [ + o & * o [[ id ,id ], [ id, 3 ]], 1.75 ]

def Fxlxm = * o [ Fx o 1,Fx o 2 ]

def xm = / o [+ o [ 1, 2 ], 2 ]

def xlxm = [ 1, 2 ]

def xmxr = [ 2, 3 ]

def xmxm = [ 2, 2 ]

def Pnt = [1, xm, 2]

def Iter = case(lt o [Fxlxm ,0 ]-->xlxm ;

eq o [Fxlxm , 0 ]-->xmxm ;

lt o [Fxlxm , 0 ]-->xmxr) o Pnt

def FxTest = lt o [- o [ 1, 2 ], eps]

1 o (repeat Iter, FxTest ): <-1, 1>

stop
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Fig. 2: Zeroes of the function f(x) = x2 + 3x− 1.75 with the bisection method: interval [−1, 1] and approximation ε = 0.01

applied to an object) that, once evaluated, will represent the
result of the program. The writing of complex programs is
not a trivial activity a fortiori with both D# machine and
graphical representation languages that do not provide higher-
order function. To make more straightforward and exploit the
powerful program that the functional style has in exploding
all parallelism that programs present, we created the functional
programming language CHIARA to program the machine.

CHIARA system is a tuple (O, F, F :, D), where: O is a set
of objects; F is a set of functions (or operators) from objects
to objects; F is a set of functional forms (functionals) from
functions to functions; : is the application operation; D is a set
of function definitions.
CHIARA includes the special object ⊥, atoms like integer
fixed and floating-point numbers, characters and strings, and
sequences denoted with angle brackets like

〈1, 2, 3〉, 〈〈1, 2〉, 〈3, 4〉〉
CHIARA peculiarity is that its elementary operators are the D#
operators. In CHIARA they form the functionally complete set
– able to generate any other more complex function a program
may need by applying the metacomposition rule. The above
definitions allow the translation of any CHIARA program in
a D# program. A detailed description of CHIARA in terms of
its objects, functions, functional forms, application operations,
and function definitions can be found in [16]; so, in this paper
we only refer to some example operators that are present in the
hHLDS model.
The powerful program algebra of CHIARA is able to extract
all parallelism a program has in terms elementary operators,
and, after the translation in D#, it can be consumed by the
configurable dataflow machine. In fact, since every function in
CHIARA can be written as a composition of basic functions
and functionals, e.g. something like:

def f = f1 ◦ f2 ◦ . . . ◦ fk ◦ . . . ◦ fn−1 ◦ fn

it often happens that some segments of this expression, fk ◦
. . . ◦ fn−1 ◦ fn for some k ≤ n, turn out to involve just
routing functions, i.e. functions that move data between places
without performing any kind of actual computation but only
sequence-to-sequence or sequence-to-object transformations. In
our prototype, combinatorial operators are turned into suitable
DAC connections since they do not require ”computational”
resources – they only require suitably configured switches
between the DACs computing the object they are applied to and
the DACs actually consuming the result of this computation.
At the language level, this can be justified by the fact that
CHIARA only admits single-valued functions, and therefore
some segments of the function computation just move data
to the functions that have to consume them. In addition, as
CHIARA programs are variable free, we can easily recognize
in the code the functions that only route data to the places
where they are consumed and distinguish such code from the
one that actually performs computations. In a framework where,
to exploit dataflow parallelism for their execution, programs and
data are distributed over several processing nodes, this point is
very important because it facilitates the mapping and scheduling
process. Indeed, we have the possibility to allocate first the
initial data set over the dataflow execution engines and then to
follow the well defined instructions present in the program.
The whole compilation process is composed of two steps (cf.
Fig. 3(a)):
• a compilation step that translates in D# the program,

creating thus the DPG;
• a mapping step that partitions the DPG and constructs the

list of parts to assign to processing nodes.
D# and DPG generation. Just to give an idea of CHIARA’s ex-
pressive power, the typical way of writing CHIARA programs,



and how the overall compilation step works, let us consider as
an example the program that evaluates the zeroes of a function
using the bisection method. The CHIARA code is shown in
Fig. 2(a). After the translation step, the compiler produces the
D# code and its graphical representation as shown in Figs. 2(b)
and 2(c). The next step involves generating the DPG table. The
DPG table is in turn divided in two tables with two physically
separated purposes: the former becomes the configuration graph
table without any data (initial and constant) value, the latter
becomes the initial and result- data with only the data values
and the information needed to properly associate them to the
actors which come from, and the locations where the Result
Data. The importance of this phase is both to cut the D#
code off from the mapper job and to allow the overlap of the
configuration activities into the Kernel Processor (see Fig. 3(b)
and Fig. 4(a)) and of the execution into the dataflow execution
engine.

DPG mapping. We did not explore extensively here the
problem of a general DPG mapping, which is left for future
work. Here the aim is introducing the partiotioning problem and
observing that in case of a large DPG out envisioned solution
implies a proper scheduling in time on the available resources.
The entire mapping process is built around the activities of the
compiler (preparatory phase) and the activities of the mapper
(executive phase), oriented to partition the configuration graph
table and create list of sub-DPGs to assign to processing nodes.
Before starting the partitioning, we need to point out some
parameters that characterize the resources that the configurable
dataflow machine offers. For the machine we have pinpointed
these parameters that characterize resources: the number of
DACs nDAC in a MDE, the number of processing nodes
Npn, and the number of DACs NDAC in all the configurable
machine. Likewise, in terms of abstract entities, these pa-
rameters become: the number of actors Na in a DPG, the
number of actors nNai

in the ith subgraph, and the number of
subgraphs Nsg . As far as the mapping and partitioning steps are
concerned, either the DPG is larger than the available number
of DACs or not. In the latter case, to solve the problems related
to the third case shown in the table, it has been necessary
to introduce the concept of temporal partitioning to partition
a task into temporally interconnected subtasks. Computations
represented by a DPG with requirements (problem size) that
exceed the machine number of DACs and memory locations
(machine configuration) cannot be completely mapped on the
machine without using scheduling policies. Even if the topic
of scheduling policies is not treated here, thanks to our ar-
chitectural choices, the automatic scheduling of sub-DPGs is
guaranteed for the execution of such a DPG, allowing thus
the execution of DPGs with unlimited number of resource
requirements (at least from the theoretical point of view).

IV. THE CONFIGURABLE DATAFLOW MACHINE

A configurable dataflow machine has been developed within
an integrated software-hardware project named Demand Data
Driven Architecture System (D3AS) [23]. Fig. 3.1 describes the
toolchain. Gray boxes represent the software developed and the
sequence of the entire compilation process that generates the
DPGs expressed in D# language ( III). White boxes represent
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Fig. 3: D3AS computing system

the software to be developed at a later stage. Fig. 3(b) shows
the general D3AS architecture. It consists of a configurable
dataflow system constituted by k processing nodes, an internode
interconnection for the communication of DPGs allocated over
more nodes and a host, to supply all software activities to
compile, partition, map, and create the ordered list of DPGs
to assign to each processing, mass storage, and etc..

The processing node architecture. Each processing node is
constituted by a the Kernel Processor (Fig. 3(b) and Fig. 4(a).1)
that supports the macro-functions to load a DPG onto the Many-
DAC Dataflow Execution-engine (MDE) shown in Fig. 4(a).2.
Instead of a von Neumann-based many-core chip, the MDE
is a many-core chip where the n DACs constitute a set of
completely decentralized and self-scheduling execution units
connected through the interconnecs (a discussion on which
type is more appropriate is in the next subsection The In-
ternode Interconnects) that implements arcs and links. The
graph configurator register holds the DAC function codes and
the crossbar-switch code that constitute the DPG configuration
loaded onto the MDE. Three I/O register banks to receive/send
data tokens from/to the Kernel Processor. So, once configured,
DACs can fire as soon as valid data tokens start entering the
MDE thanks to their asynchronous behavior. A DAC (Fig. 4(b))
consists of a firing rule unit that implements the hHLDS firing
rules by means a simple hardware circuitry, and an augmented
ALU that implements the D# operator set. In this way, dataflow
actor operations are sequenced by the data validity firing rule.
In cooperation with the MDE, the Kernel Processor includes
three fundamental blocks whose functionalities are:

- Graph Configuration Manager (GCM): (i) all the sub-
DPG configuration tables are stored in the Graph Config-
uration Table memory; (ii) when an enabling Send-Next-
Configuration signal from the Graph Scheduler reaches the
graph manager, the graph manager transfers the scheduled
graph configuration from its memory to the MDE.

- Parallel Memory Processor (PMP): at the same time, the
scheduler sends the enabling Send-Initial-Data signal to
this memory processor that (i) prepares the initial data
tokens the for their transfer to the dataflow execution en-
gine; after having organized previous transfer, (ii) prepares
the result data token for tokens transfer from the dataflow
execution engine to the output buffer, as soon as they are
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Fig. 4: configurable Processing Node architecture

ready to the output buffer registers; when the computation
ends, it (iii) sends a termination signal to the scheduler.

- Graph SCheduler (GSC): (i) it implements the scheduling
policy (defined after the partitioning and mapping activi-
ties) for the sub-DPGs allocated on the processing node;
(ii) it sends enabling signals to the graph configuration
manager and to the parallel memory processor; it (iii)
manages the interaction with the Host.

The Internode Interconnect. At the moment, we are eval-
uating three possible solutions. The reason why we have not
chosen a solution yet, is that each of them conditions parameters
like scheduling policy, scalability, cost, performance, and so on
when the DPG dimension requires to be sub-DPGs over several
processing nodes. For an example, from an architectural point
of view a crossbar switch that connects the processing nodes
would be the ideal solution to transfer data token between them
because would offer the maximal flexibility and preserve the
pure dataflow execution and the self-scheduling policy is the
only one needs. However, this solution, in terms of scalability,
complexity, and cost, results hardly feasible. On the other hand,
a direct network topology would be a solution that offers a very
high scalability and limited cost but no flexibility. However,
this solution, in terms of performance like mapping, latency,
bandwidth, routing algorithms is unacceptable also due to the
fine grain operations that dataflow offers. Finally, a trade-off
solution between the two extremes would be the best solution.
However, our work on this solution is still not mature to present
any reliable result.

From the architectural point of view, our configurable
dataflow machine is an Interconnection Mode Configurable
machine because in each MDE the storing of temporary data
and instructions are eliminated as traffic. This because during
the execution of a sub-DPG, neither instructions nor data
need to be fetched from memory. In fact, once the sub-DPG
configuration is loaded from the kernel processor onto the
dataflow execution engine, its execution happens when the
parallel memory processor loads the set of data tokens onto
the MDE. So it is that the ”computing beat” depends on the
data tokens availability, e.g. as it happen during a pipelined

execution dataflow. That makes our architecture different from
other dataflow and FPGA-based ones.

V. EVALUATION METRICS

Several issues affect the performance of current highest
performance computers (listed in the Top500) when dealing
with highly data-intensive workloads [24]. In contrast, current
unconventional architectures (FPGA-based, dataflow, etc.) show
a better speedup than Top500 machines. Also, same Authors
[24] suggested to add new measurements to the current per-
formance metric to take into account parameters, such as pin
throughput, local memory size/bandwidth, power consumption
– as asynchronous circuits consume less power. Moreover, such
metrics are partially adopted by the Green500 list. They also
underlined the issue in evaluating radically different models
of computation, such as dataflow, that remains yet to be
addressed. Following their advice, we have pinpointed some
parameters that can be taken into account to evaluate a dataflow
architecture like ours with a clockless many-DAC dataflow
processor (MDE).
For the MDE we have first specified the evaluation model
to identify which critical parameters condition the latency
for loading a DPG configuration from the Kernel Processor
to the dataflow execution engine, and then explain how to
determine its computation time. Since the MDE versatility to
execute different DPGs on it, this has been the critical part for
the parameter identification. Regarding the power consumption
evaluation, we decided here to focus on other metrics detailed
below (not the power). Regarding the Kernel Processor we
have not pinpointed any critical parameter because it is mainly
a hardware controller that manages all necessary activities
to execute the sub-DPGs assigned to the node processing
and because it generally overlaps its activities with the MDE
execution.

Evaluation model. Significant performance parameters that
should be considered are: the latency tDAC to execute a DAC
operation; the latency tcnf to load a sub-DPG configuration
– network and DACs codes, and the latency tItk and tOtk to
load the initial and the result tokens, respectively, between the



TABLE I: MDE latency configuration (ns)
tconf tIr−r Tconf

28 4 32

Kernel Processor and the dataflow execution engine. Regard
to the execution time, we consider the latency for a acyclic
sub-DPG, but only one execution of its if it is an iterative
data-dependent graph. Obviously, the execution time teDP G

of
a sub-DPG depends on the number of sequential levels (steps)
composing the loaded graph. As an example, let us consider the
D# graphical representation shown in Fig. 2(c). Since the DPG
is scattered in 28 operations organized in 12 sequential levels,
the number of sequential levels nsql establishes the execution
time, teDP G

= nsql × tDAC if it entirely fits in an MDE.
Other parameters are the latency tOr−r and tIr−r needed to
transfer and stabilize bits between external registers and internal
registers, respectively. tOr−r occurs when a configuration and
input tokens move from the Kernel Processor to the dataflow
execution engine. Due to the limited pin number that a device
has, the bit transfer to the dataflow execution engine is orga-
nized in nps pipeline stages whose buffer-size is the number of
pins np used for the throughput thr to and from the dataflow
execution engine. For the parameters, the independent variable
are: np, the number of DACs nDAC inside an MDE; the number
of bits nbtk to represent a data token; and the number of bits
nbop to represent an operation code.

To define the total number of bits required for the execution
of a sub-DPG – the formulas for all the input tokens NbItk

and the configuration Nbcnf (network and DACs codes) are:

NbItk = (2 · nbtk) · nDAC (1)
Nbcnf = nDAC · (2dlog2 nDACe+ nbop) (2)
Nbtr = nDAC · (2dlog2 · nDACe+ nbop + 2 · nbtk) (3)

nps = dNbtr

thr e (4)

where Nbtr is number of the bits required to load a sub-DPG in
the dataflow execution engine. After that the evaluation model
becomes:

tconf = tItk = tOtk = nps · tOr−r (5)
Tconf = tconf + tIr−r (6)

Latency evaluation. For the MDE estimate, we have used two
Altera APEX 20K15-C, one for the Kernel Processor and one
for the MDE, whose available pins we have exploited a number
of pins npin = 830 for the communication with the Kernel
Processor. For its realization, it has been possible to only carry
out nDAC = 28 interconnected DACs after several attempts
due to the interconnect Area penalty that quickly consumed
the device resources. Then we set nbtk = 33 and nbop = 8.
Once defined the MDE characteristics, the throughput between

Kernel Processor and dataflow execution engine has been thus
organized: 231 pins for each token set T I(A), T I(B), and
T O; 70 and 56 pins for the crossbar switch code and the
DAC function codes, respectively, employing residual pins
for control signals like reset internal I/O buffers, reset all,
acknowledgment. The set of registers has been the trade-off

result between a low nps value and a low I/O pin penalty – the
more unused I/O pins, the higher pin penalty, then consequently
the higher is nps.
With the Altera tools, we evaluated tOr−r, tIr−r, and tDAC .
For them, we measured tOr−r = 7ns, tr−r = 4ns, and
tDAC = 30ns. As the interconnect latency turned out to be
a small value (less than 1ns), we ignored it. Applying the
evaluation model formulas, Table I shows the latency that
occurs when the MDE changes its configuration from a DPG to
another. This are the preliminary results for our small example
of Fig. 2. The whole process of configuring an FPGA for the
same example may require an average of 7 minutes [25].

VI. RELATED WORKS

The continuous growth of the number of transistors and
cores per chip and a lack of significant advance in the con-
ventional parallel processing arena have renewed an interest
in dataflow computing. A major active dataflow project that
is investigating on how to exploit program parallelism with
many-core technology is TERAFLUX. Its challenging goal is
to develop a coarse grain dataflow model to drive fine grain
multithreaded or alternative/complementary computations em-
ploying Teradevice chips [7][8][10]. The project covers almost
all aspects from the programming models in standard languages
such as C, OpenMP, StarSs [26], OpenACC [27] through
the full system simulation of standard cores running off-the-
shelf Linux, where dataflow computation can be offloaded to
dataflow accelerators. DPG could be potentially generated as
output of the compilation toolchain similarly to Fig. 3(a). Since
standard threads are seriously flawed because wildly nondeter-
ministic and implementing a multithreaded computation model
is difficult [28], an interesting idea proposed in TERAFLUX
is Dataflow Threads (DF-Threads) [11][7]. A similar concept
is the dataflow codelet or simply codelet [12]. A codelet
is collection of machine instructions smaller than a thread
but coarser than traditional dataflow and represents the finest
granularity of parallelism that can be scheduled as a unit of
computation. Its operational semantics asserts that a codelet is
first enabled, when all its events are satisfied, and then fired
(scheduled), when a processing element becomes available.
DF-Threads and Codelets represents a step towards the fine
granularity of dataflow. Both execution models (DF-Threads
and Codelets) are still far from the effective and efficient
self-scheduling of an actor present in the static model. More
recently, Less recently, new reconfigurable architectures very
similar to the dataflow approaches have been proposed. TRIPS
[29] is based on a hybrid von Neumann/dataflow architecture
that combines an instance of coarse-grained, polymorphous grid
processor core with an adaptive on-chip memory system. TRIPS
uses three different execution modes, focusing on instruction-,
data- or thread-level parallelism. WaveScalar [30], on the other
hand, totally abandons the program counter. Both TRIPS and
WaveScalar take a hybrid static/dynamic approach to schedul-
ing instruction execution by carefully placing instructions in
an array of processing elements and then allowing execution to
proceed dynamically. But, in our configurable dataflow machine
during the execution of an algorithm it is not necessary to fetch
any instruction or data from memory. To execute a DPG, all
it needs from memory is the initial data-token set, so any data



structure can takes advantage of that to increase the transfer rate
and overcome the problem of the inefficiency in handling big
data, typical of the dataflow model. the execution of a DPG is
based on the homogeneous High Level Dataflow System [14], a
static dataflow model, whose peculiarity is the presence of only
valid data-tokens and actors with homogeneous I/O conditions
(only one output and two input arcs).
Another lively interest in dataflow comes from FPGAs-based
computing. In this field, there is a lot of research on the map-
ping and execution of dataflow graphs [31] [32], but no solution
is addressed to their execution in hardware without employing
the control flow information. Besides, the reconfiguration time
cost when a DPG changes is beyond compared to our MDE.

VII. CONCLUSIONS

This paper describes the Interconnection Mode Configurable
Dataflow-Machine based on a novel approach to the archi-
tectural and programming models. It represents not only a
drastic departure from conventional computer organizational
concept but also a drastic departure from the other dataflow
machines. A detailed description of the computing architecture
is given together with the execution model and the graphic
machine language D#, based on the hHLDS model. A re-
examination of the functional programming style is also given.
The whole compilation process, composed by a compilation
step and a mapping step is described, and an evaluation model
for the dataflow execution engine is also presented. Finally
some preliminary results are reported on the configuration cost
latency.
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