CORRIGENDUM
NON-TRIVIAL NON-NEGATIVE PERIODIC SOLUTIONS OF A SYSTEM OF DOUBLY DEGENERATE PARABOLIC EQUATIONS WITH NONLOCAL TERMS

GENNI FRAGNELLI
Dipartimento di Matematica, Università di Bari
Via E. Orabona 4, 70125 Bari, Italy

PAOLO NISTRI AND DUCCO PAPINI
Dipartimento di Ingegneria dell’Informazione, Università di Siena
Via Roma 56, 53100 Siena, Italy

(Communicated by the associate editor name)

Abstract. We correct a flaw in the proof of [1, Lemma 2.3].

1. Corrigendum. This Corrigendum concerns the proof of [1, Lemma 2.3]. In that proof there is a flaw in the estimate of \(\log x_k \) due to an incorrect inequality. We provide here a correct estimate of \(\log x_k \) in 1.5 which preserves the validity of Lemma 2.3. For the reader convenience we recall the statement of Lemma 2.3 and we give its complete proof. Here \(m > 1 \) and \(p > 2 \).

Lemma 2.3 Let \(K > 0 \) and assume that \(u \) is a non-negative periodic function such that \(u \in C(\mathcal{Q}_T), u^m \in L^p(0,T;W^{1,p}_0(\Omega)) \) and satisfying

\[
u_t - \text{div}\{[|\nabla (u^m + \epsilon u)|^2 + \eta]^\frac{p-2}{2} \nabla (u^m + \epsilon u)} \leq Ku, \quad \text{in } \mathcal{Q}_T
\]

and \(u(\cdot, t)|_{\partial \Omega} = 0, \) for \(t \in [0,T] \). Then there exists \(R > 0 \) and independent of \(\epsilon \) and \(\eta \) such that

\[\|u\|_{L^\infty} \leq R.\]

Proof. We follow Moser’s technique to show the stated a priori bounds. Multiplying

\[
u_t - \text{div}\{[|\nabla (u^m + \epsilon u)|^2 + \eta]^\frac{p-2}{2} \nabla (u^m + \epsilon u)} \leq Ku
\]

by \(u^{s+1} \), with \(s \geq 0 \), integrating over \(\Omega \) and passing to the limit as \(h \to 0 \) in the Steklov averages \(u_h \) we have

\[
K\|u(t)\|_{L^{\frac{s+2}{s+1}}(\Omega)} \geq \frac{1}{s + 2} \frac{d}{dt}\|u(t)\|_{L^{\frac{s+2}{s+1}}(\Omega)}^s + (s + 1) \int_\Omega \|\nabla (u^m + \epsilon u)|^2 + \eta\|\frac{p-2}{2} (mu^{m-1} + \epsilon)u^s |\nabla u|^2.
\]

2000 Mathematics Subject Classification. Primary: 35K65, 35B10; Secondary: 47H11.

Key words and phrases. Doubly degenerate parabolic equations, non-negative periodic solutions, topological degree.

Research supported by the grant P.R.I.N. 2008 “Controllo Nonlineare: metodi geometrici e applicazioni”.

1
Since $p > 2$, $m > 1$ and
\[u^{(m-1)(p-2)} |\nabla u|^{p-2} \leq (mu^{m-1} + \epsilon)^{p-2} |\nabla u|^{p-2} \leq |\nabla (um + \epsilon u)|^2 + \eta \frac{s + 2}{s + 1}, \]
we have
\[\frac{1}{s + 2} \frac{d}{dt} \|u(t)\|^{s+2}_{L^{s+2}(\Omega)} + \int_{\Omega} u^{(p-1)(m-1)+s} |\nabla u|^p \leq K \|u(t)\|^{s+2}_{L^{s+2}(\Omega)}. \]
This implies
\[K(s + 2) \|u(t)\|^{s+2}_{L^{s+2}(\Omega)} \geq \frac{d}{dt} \|u(t)\|^{s+2}_{L^{s+2}(\Omega)} + \frac{s + 2}{[m(p-1) + s + 1]p} \int_{\Omega} \|u\|^{m(p-1)+s+1}_{L^{p}(\Omega)} \].

For ϵ and η fixed and $k = 1, 2, \ldots$, setting
\[s_k := 2p^k + \frac{p^k - p}{p - 1} + m - 1, \quad \alpha_k := \frac{p(s_k + 2)}{m(p - 1) + s_k + 1}, \quad w_k := u \frac{m(p-1)+s_k+1}{p}, \]
we obtain by 1.1
\[\frac{d}{dt} \|w_k(t)\|^{s_k}_{L^{s_k}(\Omega)} + \frac{s_k + 2}{[m(p-1) + s + 1]p} \|\nabla w_k(t)\|^{p}_{L^{p}(\Omega)} \leq K(s_k + 2) \|w_k(t)\|^{s_k}_{L^{s_k}(\Omega)}. \]

Observe that since $s_k \to +\infty$, as $k \to +\infty$, there exists k_0 such that $\alpha_k \in (1, p)$ for all $k \geq k_0$. By the interpolation and the Sobolev inequalities, it results
\[\|w_k(t)\|_{L^{\alpha_k}(\Omega)} \leq \|w_k(t)\|^{\theta_k}_{L^1(\Omega)} \|w_k(t)\|^{1-\theta_k}_{L^\alpha(\Omega)} \leq C \|w_k(t)\|^{\theta_k}_{L^1(\Omega)} \|\nabla w_k(t)\|^1_{L^\alpha(\Omega)} \]
for all $k \geq k_0$. Here $\theta_k = (s - \alpha_k)/(\alpha_k(s - 1))$, $s > p$ is fixed (say $s = p^* + \eta$ if $p < n$, where $p^* := np/(n-p) + C$ is a positive constant. Using the fact that
\[\|w_k(t)\|_{L^1(\Omega)} = \|w_{k-1}(t)\|^{\alpha_k-1}_{L^{\alpha_k}(\Omega)} \]
and defining $x_k := \sup_{t \in \mathbb{R}} \|w_k(t)\|_{L^{\alpha_k}(\Omega)}$, one has
\[\|w_k(t)\|^{\alpha_k}_{L^{\alpha_k}(\Omega)} \leq C \|w_{k-1}(t)\|^{\alpha_k-1}_{L^{\alpha_k}(\Omega)} \|\nabla w_k(t)\|^{1}_{L^\alpha(\Omega)} \]
\[\leq C x_{k-1}^{\alpha_k-1} \|\nabla w_k(t)\|^{1}_{L^\alpha(\Omega)}, \]
for all $k \geq k_0$. Thus, by 1.2,
\[\frac{d}{dt} \|w_k(t)\|^{\alpha_k}_{L^{\alpha_k}(\Omega)} \leq K(s_k + 2) \|w_k(t)\|^{s_k}_{L^{s_k}(\Omega)} - C \|w_k(t)\|^{s_k}_{L^{s_k}(\Omega)} x_{k-1}^{\alpha_k-1} \|\nabla w_k(t)\|^{s_k}_{L^{s_k}(\Omega)} \]
\[= \left(k - \frac{C}{[m(p-1) + s_k + 1]p} \|w_k(t)\|^{s_k}_{L^{s_k}(\Omega)} x_{k-1}^{\alpha_k-1} \right) \cdot (s_k + 2) \|w_k(t)\|^{s_k}_{L^{s_k}(\Omega)}, \]
for all $k \geq k_0$. By Lemma 1.1 below, the differential inequality 1.3 implies
\[\|w_k(t)\|_{L^{\alpha_k}(\Omega)} \leq \left(\frac{K}{M_k} x_{k-1}^{\alpha_k-1} \right)^{\eta_k}, \]
for all $k \geq k_0$, where $\eta_k := (1 - \theta_k)/[p - \alpha_k(1 - \theta_k)]$ and $M_k := C/[m(p-1) + s_k + 1]p$. By definition of x_k and 1.4 we get
\[x_k \leq \left(\frac{K}{M_k} \right)^{\eta_k} x_{k-1}^{\alpha_k-1}. \]
for all $k \geq k_0$, with $\nu_k := p\alpha_{k-1}\theta_k/[p - \alpha_k(1 - \theta_k)]$.

If $x_{k-1} \leq 1$, using the fact that $x_{k-1} = \sup_{t \in \mathbb{R}} \|u(t)\|_{s_{k-1}+2}^{m(p-1)+s_{k-1}+1}$, one has $\|u\|_{L^\infty} \leq 1$. Now, assume $x_{k-1} > 1$ and observe that there exists \bar{k}_0 such that, for all $k \geq \bar{k}_0$, $\eta_k \leq 1/(p\theta)$ and $\nu_k \leq p$. Here $\theta := (s - p)/(p(s - 1))$. Without loss of generality, assume $k_0 = \max\{\bar{k}_0, k_0\}$. Then, there exists a positive constant A such that

$$x_k \leq \left(\frac{K}{C}\right)_{\eta_k} [m(p-1) + s_k + 1]_{p\nu_k} x_k^{\nu_k}$$

$$\leq \left(\frac{K}{C}\right)_{\eta_k} \left(\mp + \frac{2p^{k+1} + s_k}{p - 1}\right)_{p\nu_k} x_k^{\nu_k}$$

$$\leq A p^{k+1} x_k^{\nu_k}$$

for all $k \geq k_0$. Thus

$$\log x_k \leq \log A + \frac{k + 1}{\theta} \log p + p \log x_{k-1}$$

$$\leq \log A \sum_{i=0}^{k-k_0-1} p^i + \frac{\log p}{\theta} \sum_{i=k_0+1}^{k+1} i p^{k+1-i} + p^{k-k_0} \log x_{k_0}$$

$$\leq \log A \left(\frac{p}{(p-1)^2}\right)_{k_0(p-1) + 2p - 1}$$

$$+ \log A \frac{1 - p^{k-k_0}}{1 - p} + p^{k-k_0} \log x_{k_0}.$$

Indeed, taking $x = \frac{1}{p}$ in $x \frac{d}{dx} \sum_{i=0}^{k+1} x^i = x \frac{d}{dx} \left(\frac{1 - x^{k+2}}{1 - x}\right)$, it results

$$\sum_{i=k_0+1}^{k+1} i p^{k+1-i} = \frac{p^{k+3}}{(p - 1)^2} \left[\frac{1}{p} (k + 1) - k - 2\right] - \frac{1}{p^{k_0+2}} \left(k_0 + 1\right) \frac{1}{p} - k_0 - 2\right]$$

$$\leq \frac{p^{k+3}}{(p - 1)^2} \frac{1}{p} \left(k_0 + 2 - k_0 + 1\right) = \frac{p^{k-k_0}}{(p - 1)^2} \left(k_0(p-1) + 2p - 1\right).$$

Then, by 1.5, it follows

$$x_k \leq A \frac{p^{k-k_0}}{(p - 1)^2} p^{k-k_0} x_{k_0}^{\nu_k}.$$

Since $x_k = \sup_{t \in \mathbb{R}} \|u(t)\|_{s_{k}+2}$, we obtain

$$\|u(t)\|_{L^\infty} \leq \lim_{k \to \infty} \|u(t)\|_{s_{k}+2}$$

$$\leq \lim_{k \to \infty} \left\{A \frac{p^{k-k_0}}{(p - 1)^2} p^{k-k_0} x_{k_0}^{\nu_k} \right\}$$

$$=: R, \quad \forall t \in \mathbb{R},$$

where R is a positive constant. Hence $\sup_{t \in \mathbb{R}} \|u(t)\|_{L^\infty} \leq R$. It remains to prove that R is independent of ϵ and η as claimed. To this aim it is sufficient to prove that there exists $C > 0$ such that $x_{k_0} \leq C$. Indeed, by the inequality 1.1 with $s_0 := s_{k_0},$
it follows
\[
\frac{d}{dt} \|u(t)\|_{L^{p+2}(\Omega)}^{p+2} + \frac{s_0 + 2}{m(p - 1) + s_0 + 1} \int_{\Omega} \left| \nabla u \right|^{m(p-1)+s_0+1} \leq K(s_0+2) \|u(t)\|^{s_0+2}_{L^{p+2}(\Omega)}.
\]

Moreover, by the Hölder inequality with \(r := \frac{m(p-1)+s_0+1}{s_0+2} \) and the Poincaré inequality, we have
\[
\|u(t)\|_{L^{p+2}(\Omega)}^{p+2} \leq C \|\nabla u\|_{L^{p}(\Omega)}^{m(p-1)+s_0+1}
\]
for a positive constant \(C \). Thus, using 1.6, one has
\[
\frac{d}{dt} \|u(t)\|_{L^{p+2}(\Omega)}^{p+2} + \frac{s_0 + 2}{m(p - 1) + s_0 + 1} \|u(t)\|_{L^{p+2}(\Omega)}^{m(p-1)+s_0+1} \leq K(s_0+2) \|u(t)\|_{L^{p+2}(\Omega)}^{s_0+2}.
\]
Hence
\[
\frac{d}{dt} \|u(t)\|_{L^{p+2}(\Omega)}^{s_0+2} \leq \|u(t)\|_{L^{p+2}(\Omega)}^{s_0+2} \left(K(s_0+2) - M \|u(t)\|_{L^{p+2}(\Omega)}^{m(p-1)+s_0+1}\right),
\]
where \(M := \frac{s_0 + 2}{C(m(p - 1) + s_0 + 1)^{m(p-1)+s_0+1}} \). Lemma 1.1 implies
\[
\|u(t)\|_{L^{p+2}(\Omega)} \leq \left\{ CK(m(p - 1) + s_0 + 1)^{m(p-1)+s_0+1}\right\} \frac{1}{m(p-1)+s_0+1}, \quad \forall t \in \mathbb{R}.
\]
Thus there exists \(C > 0 \) such that \(x_{\epsilon, \eta} = \sup_{t \in \mathbb{R}} \|u(t)\|_{s_0+2} \leq C \), as claimed.

\[\square\]

Lemma 1.1. Let \(f : \mathbb{R} \to (0, +\infty) \) be a differentiable and \(T \)-periodic function; suppose that there exist positive constants \(s, \alpha, \beta, \gamma \) such that
\[
f'(t) \leq f'(t)(\beta - f^\alpha(t)),
\]
for all \(t \in \mathbb{R} \). Then \(\beta - \gamma f^\alpha(t) \geq 0 \) for all \(t \in \mathbb{R} \).

We took advantage of this occasion to provide also an explicit estimate of \(x_{\epsilon, \eta} \) independent of \(\epsilon \) and \(\eta \), which shows that \(R \) is independent of these parameters.

We finally point out some misprints and imprecisions that could mislead the reader: at page 39, the uniqueness of the solution of (3) follows from [2, Theorem 32D], and Lemma 2.2 is proved by using [19, Theorem 1.2]; at the end of p. 40 the right equation for \(z \) is
\[
L_{\epsilon, \eta, p}^m[z] + Mz = 0
\]

REFERENCES

E-mail address: fragnelli@dm.uniba.it
E-mail address: pnistri@dii.unisi.it
E-mail address: papini@dii.unisi.it